

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

SAN
Automation

Brocade Special Edition

by Chip Copper and
John Paul Mueller

01_9781394159826-ffirs.indd ii	 Trim	size:	5.5	in	×	8.5	in	 July	8,	2022	7:20	PM

SAN Automation For Dummies®, Brocade Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in
the United States and other countries, and may not be used without written permission. Brocade
and the stylized B logo are among the trademarks of Brocade Communications Systems LLC. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/
go/custompub. For information about licensing the For Dummies brand for products or services,
contact BrandedRights&Licenses@Wiley.com.

ISBN 978-1-394-15982-6 (pbk), ISBN 978-1-394-15983-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgments

We’re proud of this book and of the people who worked on it. Some of the
people who helped bring this book to market include the following:

Project Editor: Martin V. Minner

Editorial Manager: Rev Mengle

Executive Editor: Katie Mohr

Business Development
Representative: Karen Hattan

Production Editor: Siddique Shaik

Brocade Contributor: Curt Beckmann

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION ... 1

About This Book ... 1
Icons Used in This Book ... 2

CHAPTER 1: Rediscovering the Automated SAN 3
Exploring the Automated SAN .. 4

Fabric formation ... 4
Trunking ... 5
Slow drain device detection ... 5

Comparing to Other Infrastructures .. 6
Integrating FC into Today’s Workflows .. 7
Creating an Automation Plan .. 9

CHAPTER 2: Modernizing Your Automation Toolkit 11
Considering the Limits of CLI .. 11
Using Structured Data Exchange .. 14
Understanding the Data Structuring Methods 17
Using Standardized Protocols ... 19

CHAPTER 3: Choosing Your Approach ... 21
Considering the Available Choices ... 21
Using the RESTful Approach ... 23
Using the Python Approach .. 26
Using the Ansible Approach .. 30
Making Your Decision .. 32

CHAPTER 4: Automating Your First Utility .. 33
Considering the Examples ... 33
Developing a RESTful API Example ... 34
Developing a PyFOS Example ... 36
Developing an Ansible Example ... 38
Getting Help .. 42

CHAPTER 5: Ten Ways to Use SAN Automation 43

Table of Contents iii

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

iv SAN Automation For Dummies, Brocade Special Edition

Introduction 1

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

The world runs on data. It isn’t just businesses any more; it’s
everywhere, everyone needs it, and it is ever-changing and
growing. Accessing all that data requires highly available,

lightning-fast access through technologies such as Fibre Channel
Storage Area Networks (SANs). With the incredible increase in
data storage needs, storage administrators who manage SANs
need all the help they can get. That’s where automation comes
into play. Without automation, trying to get anything done
becomes an exercise in frustration and repetition. If you’re
interested in making your life easier, this book provides precisely
what you need in a compact form that won’t take you hours
to read.

About This Book
SAN Automation for Dummies, Brocade Special Edition, is for stor-
age administrators as well as for automation engineers who may
be called upon to collaborate with storage teams to automate
storage-related activities.

Storage administrators are busy people. They need to consider
tasks such as deploying storage volumes for new virtual machines,
updating and verifying software, troubleshooting, watching
bandwidth usage, and tracking inventory. This book tells you how
automation can help you perform these tasks with greater speed
and accuracy than ever before. You also discover how to create
your own automation plan so that you create the kind of automa-
tion you want with the least effort.

If you currently find yourself using the Command Line Interface
(CLI) exclusively, you may want to consider some of the other
options discussed in this book. Of course, the discussion begins
with why you may want to make a change — it’s essential to see a
benefit to any change you make. Once you discover there are other
methods you can use, you see examples written using the RESTful
API approach, PyFOS, and Ansible.

2 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

You also aren’t left with the idea that this is a fly-by-night
 solution. This book tells you about the standards-based underpin-
nings of automation and it helps you discover why this approach
works so well.

Icons Used in This Book
As you work through this book, you see various icons meant
to attract your attention. This book uses the following icons to
emphasize information you may find helpful in particular ways.

The information marked by this icon is important. If you get
nothing else out of the chapter, you need to remember informa-
tion marked by this icon. This icon also makes it easier to spot
noteworthy information when you refer to the book later.

Everyone likes those special bits of information that make life
easier or help perform tasks faster. This icon points out extra-
helpful information that you need when creating a SAN automa-
tion solution effectively.

Paragraphs marked with the Warning icon call attention to
 common pitfalls that you may encounter.

CHAPTER 1 Rediscovering the Automated SAN 3

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

 » Exploring the automated SAN

 » Comparing to other infrastructures

 » Adding Fibre Channel to workflows

 » Developing an automation plan

Rediscovering the
Automated SAN

Before we get into the nitty-gritty of automating today’s
SANs, this chapter looks briefly at how automation has
been incorporated in various networking technologies over

the years.

The first section of this chapter provides you with three cases
where you receive benefits from built-in Fibre Channel (FC) fabric
automation without any additional effort on your part.

The next two sections of this chapter tell you a bit about FC
 history and discuss how you can add FC to your workflow auto-
mations. Gaining a good understanding of why FC is different and
what it can do for you is important.

In the final section of the chapter, you see how to develop your
own automation plan. Without a great plan, any updates you
 perform to your network would prove disruptive at best.

4 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Exploring the Automated SAN
Although this book discusses automation and FC fabrics, it’s
important to note that FC has provided some automation for a
long time — even decades. The following sections provide you
with three examples.

Fabric formation
With many alternative network technologies, there are many
steps between taking the switches or routers out of the boxes
and configuring them so that they’re capable of moving traffic.
It takes a lot of planning, and if you get any of the details wrong,
your network may not come up, or it may behave unexpectedly.

FC requires less planning. All you need to do is take the switches
and directors out of the box, power them up, and connect them with
cables. There’s enough automation and intelligence inside of each
one of the switches to know how to bring itself up on a fabric and
configure itself so that it can communicate with its neighbors. Fur-
thermore, if the network is already handling traffic, the new switch
joins in the movement of that traffic without further configuration.

Anyone who’s worked with Ethernet networks is familiar with the
spanning tree protocol, created to deal with bridge loop problems
because basic Ethernet cannot form a fabric. IP routers, however,
can form fabrics. Many devices support both Ethernet and IP, so
you can cause chaos on an Ethernet/IP network if you plug a cable
into the wrong port.

FIBRE CHANNEL’S ORIGINS
Although Ethernet was named after the nineteenth-century “luminif-
erous aether,” it’s rather younger than that, having been around
about four decades now. In the initial shared media days, switches
didn’t exist, so you couldn’t automate them or expect them to create a
fabric. As bridges emerged, the Spanning Tree Protocol was created
as a quick fix to prevent crippling broadcast storms by disabling
redundant paths; however, that also meant that load balancing across
redundant paths required special configuration. FC was developed in
light of many networking challenges and was designed to solve many
of these issues automatically.

CHAPTER 1 Rediscovering the Automated SAN 5

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Through built-in automation, FC networks are smart enough to
know when devices are configured in a way that could bring down
any other network types. FC incurs fewer errors when adding new
devices. FC evaluates and uses all traffic routes. There is no risk a
new device will bring the fabric down or experience slow recon-
figurations because someone plugged the wrong device into the
wrong port. In an FC fabric, except for architectural reasons, you
can’t plug something into the wrong place. Wherever you plug it
in, it works.

Trunking
Suppose that you have traffic demands that exceed the capacities
of one link between a pair of switches. With other networks, add-
ing a link between an overwhelmed switch pair requires that you
perform a complicated set of tasks like this:

1. Enable the ports.

2. Configure the ports, taking care to use exactly the same
parameters on both sides.

3. Change parameters where necessary to reflect their coopera-
tive nature.

4. Cable the switches together.

If these steps go well, the links will share traffic, but they may
not do so optimally. For example, a single large flow may stick to
a particular link. That can mean that one link is barely used while
the other link is saturated.

FC provides an easier solution called trunking. All you need to do
is to connect pairs of ports in the same port groups across two
switches, and the trunk forms automatically. Traffic is automat-
ically load balanced between these two or more links, and you
never have the situation where one link is swamped while others
remain lightly loaded.

Slow drain device detection
Suppose that you have a storage device on the network that is
incapable of accepting storage traffic at a rate at which the host
is capable of sending it. This is sort of like a ramp that leads off
an Interstate highway but has a stoplight at the bottom. You’ll
likely see a line form when you get off an exit that has a lot of

6 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

traffic, and that line often flows into other lanes so all the traffic
on the highway slows down. The same thing happens on a stor-
age network when a slow drain device causes traffic to back up on
the SAN.

The SAN fabric can detect storage traffic backing up to a slow-
draining device and automatically moves that traffic to its own
separate virtual channel. This feature allows other traffic to
continue through the same switch and even on the same links
without hindrance from the slow-draining device. This all takes
place automatically without any intervention by the network
administrator.

Comparing to Other Infrastructures
FC’s main early competition was directly attached storage. As
external storage arrays grew in capacity, it became clear that,
to be cost-effective, they had to be shared among many hosts.
Adding ports to storage arrays was expensive so the need for
a network was clear. It was soon clear that the storage teams,
rather than the networking teams, had to manage these networks
because the storage teams understood the unique requirements
of storage traffic. Network-Attached Storage (NAS), a file-level data
storage server, was available, but no one would dream of boot-
ing an operating system or putting swap platters on storage con-
nected using Ethernet or TCP/IP.

Over time, the reliability and speed of Ethernet networks improved,
so for large data repositories, two competitors emerged — FC and
Ethernet. For years, system architects only considered these two
alternatives when designing next-generation systems.

Today, new competitors have appeared on the scene. Because of the
availability of higher capacity drives, direct attached devices are
once again appearing as an alternative to network storage. Other
architectural paradigms such as hyper-converged infrastructure
(HCI), a fully software-defined IT infrastructure that virtualizes
all conventional hardware-defined system elements, and cloud
services are offering to make storage available to users as well.

The management paradigms used in the early days of network
storage were somewhat cumbersome and awkward. Even with FC,
you performed a number of managerial steps in a specific order

CHAPTER 1 Rediscovering the Automated SAN 7

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

to allocate a new piece of storage to a host or virtual machine.
With the introduction of new storage alternatives, such as HCI
and cloud storage, administrators have asked that FC vendors
increase the amount of management that’s available using appli-
cation programming interfaces (APIs) and other automation
mechanisms. This competition is good for advancing all storage
technologies, so now FC integrates into user-based provisioning,
allocation, and management mechanisms just as easily as those
found with other storage alternatives such as cloud-based stor-
age, direct attached storage, or HCI.

Integrating FC into Today’s Workflows
Storage administrators face many tasks they perform on an ongo-
ing basis. Here are some examples of where automation can really
help out:

 » Allocating storage for new VMs: Supporting new virtual
machines (VMs) in today’s highly virtualized environment is
an almost hourly task. Performing this task as efficiently as
possible is imperative if the storage administrator is going to
keep up with the hectic pace of the virtualization team.
Deploying storage to a new VM is an interesting task because
it may touch several different platforms using these steps:

1. Allocate the storage on the storage array.

2. Present the storage on a particular storage port.

3. Add the storage port to a SAN zone that contains the
names of the servers that will serve the VM.

4. Configure the server to allow its network adapters to see
that particular storage array.

5. Let the VM know where its storage lives.

This process has a lot of moving parts. The beauty of using
automations is that they can span several platforms. In this
case, storage networking automation can ensure that the
new storage is allocated to these VMs, and zones are set up
to be driven by orchestration systems that may live on the
storage array, the host, or on an external orchestration
system. The open automation APIs and utilities make it easy
to automate the SAN to integrate into whatever provisioning
mechanism customers decide to use.

8 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Updating and verifying software: FC fabrics are, by their
nature, more secure than their IP counterparts. Nevertheless,
the need to ensure constant access to sensitive data requires
that SANs be promptly updated with the latest patches
and updates. Making sure that every device in the SAN
has the latest updates is a high-priority task for network
administrators and security officers. SAN automation allows
an administrator to set up a schedule for distributing,
installing, and verifying new software on all elements in
the storage network. Orchestration allows coordination to
ensure everything goes smoothly and as expected during
updates of other hosts and networking devices.

In addition, you can automatically run audits to verify proper
software installation in the proper places — so that software
installers don’t encounter any surprises. Automating software
installation can also detect and recover from rare but critical
software installation failures.

 » Troubleshooting: If something goes wrong in a storage area
network, the first step is to verify SAN configuration. You can
automatically run configuration verification automations to
guarantee that nothing strays from the approved configura-
tion. If a problem occurs, your automated tools can pull the
appropriate diagnostic and analytic information from all
fabric elements and make it available to other diagnostic
tools to root-cause the problem. Because of the many
monitors and counters available in the FC network, the SAN
can even help diagnose problems that exist on the host or
the storage array. You obtain this information quickly and on
demand through the fabric APIs.

 » Inventorying: Administrators want to know about devices
on the storage network. An administrator may want to verify
that other locations can still see everything in the storage
network, or want something as simple as a listing of all the
ports that are occupied or available so that they can plan for
the rack placement of the next device. Many system
administrators have been surprised to learn on a Monday
morning that someone has added a host or storage device
to the network without their knowledge. SAN automation
tools allow an administrator to gather this information and
synthesize it with other information to provide accurate,
on-demand snapshots of the storage infrastructure state.

CHAPTER 1 Rediscovering the Automated SAN 9

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Creating an Automation Plan
Automation isn’t magic. Behind every automation is an expert
who knows exactly how that automation was created. In some
cases, experts work in-house. In other cases, experts come from
a partner or a vendor to supply the missing skills and knowl-
edge to create the automation. In any case, it’s up to the expert to
determine the exact automation scope, the approach to take, the
required resources, what constitutes success, how to verify the
automation, and how to run the automation.

An easy guideline to use is that, if you can write a set of steps
down in a way that someone who doesn’t understand the task can
perform them, you can automate the task. If there is any ambigu-
ity in the process or if a certain level of finesse is required to per-
form an operation in a way that you can’t write down or describe,
the task may not be a good candidate for automation. Here are
some sweet spots for automation solutions:

 » Performing the same tasks repetitively: There is a good
chance you can automate repetitive tasks. For example,
suppose that you need to obtain log files every morning and
analyze them to be sure that nothing went wrong during the
night. In addition, you must remove the log files from the
SAN devices to make room for new logs. Even if the log files
happen to live on an external device, they still need to be
gathered, analyzed, and archived. This well-defined task
lends itself well to the idea of automation.

 » Doing something simple on a large number of devices:
You may perform a simple task just once a year, but if the
task involves performing the same steps many times, each
time with a different set of parameters, you can use
automation to perform the task faster and with fewer errors.
Consider the case of adding a new storage array to an
infrastructure where you want to add the storage array into
50 different host zones.

 » Doing a sensitive thing flawlessly and quickly: Sometimes
you must do something just once, but you know you must
get it exactly right, and you only have a small window in
which to do it. Automating this activity lets you verify it in a
safe context before doing it live.

10 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Having experts prepare automation suites that are
executed by others: Every organization has its go-to person
whom everyone knows is the in-house resident expert on some
particular task. Unfortunately, unlike computers, networks, and
storage, people don’t scale. When only one person knows how
to perform a particular task because of its complexity, then
there is a bottleneck in the process. If that person happens to
be ill or on vacation when you need the task done, then the
task must wait or a non-expert must try to perform it correctly.
This problem also works against a self-service model where the
users are free to perform tasks that would otherwise require
the intervention of IT professionals.

Now that you have a better idea of the use cases that work well
for FC, it’s time to create an automation plan. The following steps
get you started:

1. Find a task that matches one of the sweet spots in the
preceding list.

2. Write the steps that are necessary to carry out the task:

a. Determine how you would perform the task manually.

b. Find an automation expert who can translate the manual
tasks into a series of calls and routines to be made
available through the automation APIs and utilities.

For your first task, choose something that’s simple, well under-
stood, and verifiable. Many people choose infrastructure auditing
as their first automation task. By only reading and not changing
the network, you gain confidence in using automation routines
correctly, preparing you to create and deploy more sophisticated
automations that will change the storage network configuration
in the future.

CHAPTER 2 Modernizing Your Automation Toolkit 11

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

 » Understanding the command line
interface (CLI) better

 » Relying on structured data exchange

 » Considering how to structure data

 » Defining the benefits of standardized
protocols

Modernizing Your
Automation Toolkit

Administrators and engineers alike rely on the command
line interface (CLI) to perform a broad range of tasks —
mostly because the CLI is both fast and simple. In addition,

scripting CLI can take a variety of forms. The first section of this
chapter considers the limitations of CLI.

Even though humans can work quite well with the CLI and its
sometimes-convoluted output, computers often can’t. The next
two sections of the chapter explore the means to ensure good com-
munication using the Network Configuration (NETCONF) protocol
standard and methods used to format that data for transmission.

The final section discusses standards that make automation
 easier. Using standards enhances reliability and makes it possi-
ble for independent developers to write output that automatically
works with other applications that adhere to the standard.

Considering the Limits of CLI
Most networking engineers are familiar with their SAN device’s
CLI, which has been around forever. As network operating systems
gained features, vendors added graphical user interfaces (GUIs)

12 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

with menus and icons. Nevertheless, many network administra-
tors only use a GUI to open a number of console windows at the
same time. Thus, vendors have had to add new features to their
CLIs as well, by adding new parameters and options to their com-
mand syntax.

Unfortunately, this strategy has its problems. From an automa-
tion perspective, the biggest problem is that an updated command
may need to reformat its output to include new features. Suppose
that a CLI command outputs performance counters for a particu-
lar port. The updated command adds a new port counter, chang-
ing the way it shows the information.

The good news is that humans are smart. Most network opera-
tors can move between network consoles running different code
 revisions — and even different networking equipment brands —
and understand the information as each vendor provides it. They
can adjust to changes and interpret what they see on screen. If
they don’t understand something, they can read a manual or
watch a video to explain it, making it possible to understand the
command output. Unfortunately, automation can’t understand
the changes in the CLI output as easily as humans do.

Consider the example shown in Figure 2-1 of the output of two
nsshow commands. This example was generated by running the
same command on two Fibre Channel (FC) switches that differed
in their software by only a minor revision number.

The two outputs are similar, and if you can largely understand
one of them, you likely can also understand the other. Unfortu-
nately, computer logic looking at these different outputs (from
the same command) would encounter several issues. Some are big
issues, and some small, but any of them might break the auto-
mation. Here are some observations on the differences in output:

 » There is a space after the semicolon in the line that begins
with N in Output 2 as indicated by callout 1 in Figure 2-1.
That space is missing in Output 2. Surprisingly, this differ-
ence may be the one that causes the greatest difficulty.
Program logic may expect new line items to appear or
disappear, but it is very difficult to anticipate format changes
in a previously known line of data output.

CHAPTER 2 Modernizing Your Automation Toolkit 13

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » The ordering of some of the elements is different. Fabric
Port Name has changed position, as indicated by callout 2 in
Figure 2-1.

 » Each output contains elements not contained in the other, as
shown by callout 3 in Figure 2-1. Output 1 has lines labeled
FC4 Features; Output 2 has a line labeled FC4s.

FIGURE 2-1: Running a command on two different versions of FC software.

14 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DEFINING AUTOMATION
COMMUNICATIONS
Because of the need for automations to communicate with network-
ing devices, the Internet Engineering Taskforce (IETF), working with
industry leaders, developed the Network Configuration (NETCONF)
protocol standard. This standard defines a mechanism that allows
automations to communicate effectively with network devices to
obtain and set state and configuration information along with receiv-
ing event notifications from network devices. NETCONF can remove
many of the pitfalls associated with attempting to communicate with
a network device using the CLI or other non-standard mechanisms.

NETCONF establishes a common model that represents the state and
configuration information in a switch. It’s the responsibility of the
switch or network device operating system to translate values repre-
sented in this model into the operational parameters used by the
switch. This allows a layer of abstraction between the state that the
automation or orchestration tool is trying to create and the actual
implementation of that state in the network device.

For years, network administrators have used mechanisms like
send/expect scripts to try to parse CLI output, but as networks
continue to get more sophisticated, so does their output, and
 consequently this task becomes more difficult.

Using Structured Data Exchange
The model that is used to represent state and configuration infor-
mation is expressed in a modeling language called Yang. Yang
describes the structure of the different elements inside the model,
and is used to describe whether each element is read-only or
read-write. It describes the type of data that the element can hold,
such as string or integer, and it shows the relationship among
various elements, the other nested elements they contain, their
peer elements, and the parent elements that contain them. Here
is a segment of the description of a zone in Yang:

CHAPTER 2 Modernizing Your Automation Toolkit 15

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

list zone {

 key "zone-name";

 description

 "List of the members in the zone. The members can

 only be identified as a WWN, domain, index, or a

 zone alias.";

 leaf zone-name {

 type zoning-name-type;

 description

 "The zone name.";

 }

 leaf zone-type {

 type zone-type-type;

 description

 "The zone type.

 Not that target zone types cannot be created

 or modified (only deleted).";

 }

 container member-entry {

 description

 "The zone member.";

 leaf-list entry-name {

 type zone-member-type;

 min-elements 1;

 description

 "List of the members in the zone. The members

 can only be identified as a WWN, domain,

 index, or zone alias.";

 }

 leaf-list principal-entry-name {

 when "../..zone-type=1 or ../../zone-type=2";

 type zone-member-type;

 min-elements 1;

 description

 "List of the principal members in the peer

 zone. The members can only be identified as

 a WWN, domain,index, or zone alias.";

 }

 }

}

16 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Ordinarily more information goes into a Yang module such as
revisioning and governance information; this listing omits them
for brevity. Thus, the Yang description is complete, but it’s also
wordy. Although this precision is necessary when interacting with
the model programmatically, it’s sometimes useful to get a global
view of the abstraction provided by the model to see how the data
is structured.

An open source tool called pyang can parse the Yang model and
produce a tree that represents the elements in the model. The
listing includes information about each element, such as whether
it’s read-only or read write, a list, optional, or nested. Here is the
representation of the zoning model in tree form:

 +--rw zoning
 +--rw defined-configuration
 | +--rw cfg* [cfg-name]
 | | +--rw cfg-name zoning-name-type
 | | +--rw member-zone
 | | +--rw zone-name* zoning-name-type
 | +--rw zone* [zone-name]
 | | +--rw zone-name zoning-name-type
 | | +--rw zone-type? zone-type-type
 | | +--rw member-entry
 | | +--rw entry-name* zone-member-type
 | | +--rw principal-entry-name*
 zone-member-type

 | +--rw alias* [alias-name]
 | +--rw alias-name zoning-name-type
 | +--rw member-entry
 | +--rw alias-entry-name* union
 +--rw effective-configuration
 +--rw cfg-name? zoning-name-type
 +--rw checksum? string
 +--rw cfg-action? uint8
 +--rw default-zone-access? uint8
 +--ro db-max? uint32
 +--ro db-avail? uint32
 +--ro db-committed? uint32
 +--ro db-transaction? uint32
 +--ro transaction-token? uint32
 +--ro db-chassis-wide-committed? uint32
 +--ro enabled-zone* [zone-name]

CHAPTER 2 Modernizing Your Automation Toolkit 17

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 +--ro zone-name zoning-name-type
 +--ro zone-type? zone-type-type
 +--ro member-entry
 +--ro entry-name* union
 +--ro principal-entry-name* union

NETCONF has provided the standard way to represent the infor-
mation inside each network device, and you can exchange that
information by using Yang models, which remove the ambiguity
found in command lines. The format of the data as exchanged
along with the protocol that is used to exchange that data is found
in the following chapters.

Understanding the Data
Structuring Methods

Yang provides a description of how configuration and state data
should be organized inside the networking devices, but you also
need to know how information passes between an automa-
tion application and the networking device. The initial approach
was to allow networking vendors to decide independently how
 automations interact with their devices. Although flexible for
networking vendors, it is harder to create solutions that support
products from different vendors.

A second approach is creating a standardized binary representa-
tion of information contained in a Yang model. This technique
is efficient from a bandwidth viewpoint, but difficult to debug
using common network monitoring tools. Because of the amount
of bandwidth generally available in the management plane, that
degree of efficiency is arguably unnecessary.

The preferred solution is to create a human-readable data rep-
resentation that relies on commonly understood and imple-
mented rules. Two great candidates are available to accomplish
this: eXtensible Markup Language (XML) and JavaScript Object
Notation (JSON). XML has been around a little longer and every
modern platform supports XML, and nearly all programming
languages already have libraries for manipulating XML. JSON is
slightly newer, but is a little more human friendly and very popu-
lar among programmers. The level of support for JSON is already
close to that of XML, and it is likely to match it soon. This section
looks first at XML, and then JSON.

18 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

XML marshals data and shows the relationships between data
elements. You can create descriptive tags to indicate what data
content between tags represents because XML is extensible. In
most cases, humans and automations alike easily understand data
exchange content.

The power of XML for NETCONF is that the structure of Yang mod-
els map nearly identically into the structure of XML. This provides
a natural way to represent Yang model elements using an XML
representation for transport across the network. Notice the read-
ability of the following XML data block and that it maps exactly
into the description of a zone found in the previous section:

<zone>

 <zone-name>Multipath_FlashArray</zone-name>

 <zone-type>0</zone-type>

 <member-entry>

 <entry-name>FlashArray_6112</entry-name>

 <entry-name>BigArray66_5d3d00</entry-name>

 </member-entry>

</zone>

JSON is structurally similar to XML. Although the name contains
JavaScript, it’s a language-independent mechanism for repre-
senting and exchanging data that uses fewer characters than XML,
making it more bandwidth-efficient and a little easier to edit by
hand. The following code shows the JSON form of the XML-based
zoning information:

{

 "zone": {

 "zone-name": "Multipath_FlashArray",

 "zone-type": "0",

 "member-entry": {

 "entry-name": [

 "FlashArray_6112",

 "BigArray66_5d3d00"

]

 }

 }

}

CHAPTER 2 Modernizing Your Automation Toolkit 19

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Both XML and JSON are found in NETCONF implementations,
and some devices allow an incoming request to specify which
representation is to be used for the data exchange. Many pro-
grammers prefer one representation over the other. Libraries and
utility modules are available that will translate one into the other
if necessary.

Using Standardized Protocols
NETCONF calls to a network device take on the appearance of
remote procedure calls. A program creates a message bundling
an operation along with any related data. That message is sent
to a network device where the device takes any necessary action,
gathers necessary data, and returns the result.

This process should sound familiar. This is what you do every time
you use a web browser. You type in the URL, which often includes
some parameters, and then the browser sends a GET request to
the remote host. The remote host parses your message, performs
necessary operations, and returns the results, usually in the form
of an HTML document that may have attachments.

For these reasons, many NETCONF implementations use HTTP
to transport messages to and from network devices. A big advan-
tage of HTTP is that, because so many platforms implement it,
HTTP is well understood, and interoperability between different
clients and servers is almost guaranteed. In addition, the contents
of HTTP messages are readable by humans.

To see this feature in action, the following code shows a trace of
the first part of the HTTP transaction used in the previous sec-
tions. (For brevity, it shows only the meaty bit— not the early
bit where the client logs into the switch, nor the later bit where
the well-behaved client logs out.) Here is the request for device
configuration:

GET /rest/running/zoning/defined-configuration HTTP/1.1

Host: 10.18.254.37

Accept-Encoding: identity

Content-Length: 0

Authorization: Custom_Basic

YWRtaW46eHh4OmYzNzA3MGYzM2VhMDI5ZDR5MTZiNjU0ZGE1N2E4O

TU5OTVlZjRjNzU2ZTk3NmU0ZGEzM2U3ZTNlYWQ1NDM3Yjk=

20 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

An excerpt from the switch response shows the results:

HTTP/1.1 200 OK

Date: Mon, 29 Jan 2018 20:31:12 GMT

Server: Apache

Cache-Control: no-cache

X-Frame-Options: DENY

Content-Secure-Policy: default-src 'self'

X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Connection: close

Transfer-Encoding: chunked

Content-Type: application/yang-data+xml

2000

<?xml version="1.0"?>

<Response>

<defined-configuration>

<cfg>

<cfg-name>CFG_FABRIC_A</cfg-name>

<member-zone>

...

<zone>

<zone-name>Multipath_FlashArray</zone-name>

...

</zone>

...

</cfg>

...

</defined-configuration>

</Response>

If you look inside an HTTP request in your browser, you may
notice that something looks a little different here. Although the
preceding NETCONF message uses HTTP, the message contents
are not HTML, but XML (or, in similar cases, JSON).

CHAPTER 3 Choosing Your Approach 21

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

 » Seeing the solution options

 » Making a decision

Choosing Your Approach

In this chapter, you discover the various automation options
that are available, consider the advantages of each, and see
some sample code showing each approach. Of course, the

approach you choose is based on all sorts of issues that this book
can’t consider, such as availability of developers with the proper
skills. At the end of the chapter, you consider how to choose an
approach and move forward.

Considering the Available Choices
Before we get into the details of any specific implementation
methodology, you have a few things to think about. Looking at
the different automation approaches without having a project in
mind is like going to a store and browsing for tools without know-
ing how they work or what you want to build. Although you might
learn something, if you don’t have a project in mind, it’s doubtful
that you’ll be ready to automate something that has value to you
or your company.

You should practice with different automation types before you
dig into your first serious project, but it’s important to keep
your goals in mind. Your initial automation experiments should
 familiarize you with the toolset that you want to use for your
final project. Otherwise, you spend too much time learning

22 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

programming languages, command line tools, or markup lan-
guages that you won’t use. Before reading the following sec-
tions, take a few moments to think about your environment and
the tasks you do every day that you could automate. For example,
you might run diagnostic queries to determine the cause of com-
mon problems in your infrastructure. You might also automate
answers to frequently asked questions.

Pretend you have a robot assistant to perform this task for you.
Think about the training steps used to train a robot that knows
nothing about your environment to perform the task successfully.
You use these steps to capture the essence of the task so that you
can automate it. Now that you have the steps in mind, it’s the
time to consider your approach:

 » Nuts and bolts: You may need to perform the task at the
nuts-and-bolts level. There are intricate tasks that you
carefully and perform in a unique way because of your
particular situation.

 » Integration: You might not limit the motivation for the
automation to the scope of the storage network. Your final
task may include putting the information into an easily
consumed format for users who don’t know the details of
your infrastructure. That means integrating toolsets and
modules that go beyond the boundaries of the SAN.

 » Declarative: Your mindset may be that you don’t want to
have to think about each little step that goes into network
configuration. The ability to express what the network is
supposed to look like and have the infrastructure automate
itself by migrating it from where it is to where you want it to
be is important.

The good news is that each of these cases has an approach that
suits it best. This isn’t a one-size-fits-all scenario. The method-
ology used for the automation depends on the nature of the prob-
lem. You could probably use a different toolset for accomplishing
the same task, but it would be like building a doghouse using only
a screwdriver. You could do it, but it wouldn’t be easy.

CHAPTER 3 Choosing Your Approach 23

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Using the RESTful Approach
This section uses command line experiments to demonstrate
the RESTful approach. You won’t implement a large-scale auto-
mation using the techniques found here, but the command line
approach helps you understand how RESTful interaction happens.
Ordinarily, this is done programmatically. In Chapter 4, a Python
program handles the required interactions.

This example uses the curl command. curl is a CLI tool that can
transfer data to and from a server using a variety of protocols.
For clarity, this example uses curl to perform HTTP transactions.

To interact with a SAN (or other) device, you need to consult
its RESTful API reference to learn, among other things, what
“Uniform Resource Identifiers” (URIs) you need to use. (Simply
put, URIs are identifiers that can be used as part of a web address.)
According to the documentation, the URI for accessing a listing of
the zones in the active configuration is as follows:

GET <base_URI>/running/zoning/defined-configuration/

In this example, the <base_URI> is http://<our device IP
address>/rest. Begin by creating a login session with a switch
in the fabric by executing the following command (which you’d
type as a single line):

curl -X POST -v -u admin:password

http://10.18.254.37/rest/login

UNDERSTANDING RESTFUL
The RESTful API approach lets you think of a network device as a web
server. By using standard web-based tools, an automation can send
and receive transactions to or from a network device just as it would
send transactions to and from a website. This means that transac-
tions take place over a secure socket using HTTP rules to handle the
exchange. The data appears in the form of XML or JSON depending
on the RESTful API services implemented on the networking device.

24 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These are the elements that make up the command:

 » curl is the name of the command.

 » -X POST specifies the POST HTTP method (instead of GET).

 » -v specifies verbose output to access the authorization
string in the header of the response used in the next step.

 » -u admin:password specifies the credentials to use.

 » The last parameter is the Uniform Resource Identifier (URI)
for curl to use to login. (URI value is described in the RESTful
API reference.)

Here is a trace of the transaction:

* Trying 10.18.254.37...

* Connected to 10.18.254.37 (10.18.254.37) port 80

 (#0)

* Server auth using Basic with user 'admin'

> POST /rest/login HTTP/1.1

> Host: 10.18.254.37

> Authorization: Basic YWRtaW46cGFzc3dvcmQ=

> User-Agent: curl/7.47.0

> Accept: */*

>

< HTTP/1.1 200 OK

< Date: Wed, 31 Jan 2018 16:01:24 GMT

< Server: Apache

< Authorization: Custom_Basic

YWRtaW46eHh4OjNkYTllZmM3NzMxYjk4OGU2ODg1YzZkMGRjNWJlM

zMyNjBhZDYxZThkOWQ2MWMxNzNiMGVlMjU3YmM2OTcyYjA=

< Cache-Control: no-cache

< X-Frame-Options: DENY

< Content-Secure-Policy: default-src 'self'

< X-Content-Type-Options: nosniff

< X-XSS-Protection: 1; mode=block

< Connection: close

< Transfer-Encoding: chunked

< Content-Type: application/yang-data+xml

This command establishes the session used for the following
commands. Next, you perform a GET of the URI to return the
 current configuration.

CHAPTER 3 Choosing Your Approach 25

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

curl -v -H "Authorization: Custom_Basic

YWRtaW46eHh4OjNkYTllZmM3NzMxYjk4OGU2ODg1YzZkMGRjNWJlM

zMyNjBhZDYxZThkOWQ2MWMxNzNiMGVlMjU3YmM2OTcyYjA="

http://10.18.254.37/rest/running/zoning/defined-

configuration

By default, the curl uses the GET method, so you don’t need to
specify it. -H “Authorization: Custom_Basic YWR...jA=” is
the authentication and session identifying string returned in the
 previous command. -H places the string into the GET request
header as seen in the following trace:

* Trying 10.18.254.37...

* Connected to 10.18.254.37 (10.18.254.37) port 80

 (#0)

> GET /rest/running/zoning/defined-configuration

 HTTP/1.1

> Host: 10.18.254.37

> User-Agent: curl/7.47.0

> Accept: */*

> Authorization: Custom_Basic

YWRtaW46eHh4OjNkYTllZmM3NzMxYjk4OGU2ODg1YzZkMGRjNWJlM

zMyNjBhZDYxZThkOWQ2MWMxNzNiMGVlMjU3YmM2OTcyYjA=

>

< HTTP/1.1 200 OK

< Date: Wed, 31 Jan 2018 16:09:39 GMT

< Server: Apache

< Cache-Control: no-cache

< X-Frame-Options: DENY

< Content-Secure-Policy: default-src 'self'

< X-Content-Type-Options: nosniff

< X-XSS-Protection: 1; mode=block

< Connection: close

< Transfer-Encoding: chunked

< Content-Type: application/yang-data+xml
<

<?xml version="1.0"?>

<Response>

<defined-configuration>

<cfg>

<cfg-name>CFG_FABRIC_A</cfg-name>

<member-zone>

<zone-name>CLUSTER1</zone-name>

26 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

<zone-name>Z_AIXHOST_FCS2_VMAX01_SN1234_9F0

</zone-name>

...

<alias>

<alias-name>esx66_5d3d00</alias-name>

<member-entry>

<alias-entry-name>10:00:8c:7c:ff:5d:3d:00

</alias-entry-name>

</member-entry>

</alias>

</defined-configuration>

</Response>

* Closing connection 0

The results appear as an XML data segment structured according
to the description in the Yang model, and so it’s important to have
access to that model along with the RESTful API manual. Having
retrieved this information, you should close the session using the
CLI command (the results are omitted to save space):

curl -v -H "Authorization: Custom_Basic

YWRtaW46eHh4OjNkYTllZmM3NzMxYjk4OGU2ODg1YzZkMGRjNWJlM

zMyNjBhZDYxZThkOWQ2MWMxNzNiMGVlMjU3YmM2OTcyYjA="

http://10.18.254.37/rest/logout

As you can see, using RESTful APIs and HTTP exposes you to lots
of little details. At times that’s exactly what you need. At other
times, it’s more burdensome than helpful.

Using the Python Approach
One advantage of a higher-level language like Python is that it
lets you take a logical view of a task, rather than concentrating on
nitty-gritty details. Modules and support functions take a macro-
scopic view of tasks. A programmer doesn’t usually need to worry
about local variables, pointers, and data elements that don’t relate
directly to the solution.

Open source libraries like PyFOS provide a great starting point
for implementing automations on a SAN fabric that supports a
RESTful API. For example, they provide insights on implement-
ing fabric RESTful API calls directly. In the previous section, curl

CHAPTER 3 Choosing Your Approach 27

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

communicated with a SAN device. The first step was to log in to
the network. The PyFOS library file pyfos_login.py shows how
implement a login programmatically in Python:

import http.client as httplib

LOGIN_RESTCONF = "/rest/login"

...

def login(user, password, ip_addr, isHttps):

 if isHttps == "1":

 conn = httplib.HTTPSConnection(ip_addr)

 else:

 conn = httplib.HTTPConnection(ip_addr)

 auth = user + ":" + password
 auth_encoded = base64.b64encode(auth.encode())

 credential = {"Authorization": "Basic " +
 auth_encoded.decode(),

 "User-Agent": "Rest-Conf"}

 conn.request("POST", LOGIN_RESTCONF, "",

 credential)

 resp = conn.getresponse()

 auth = resp.getheader('authorization')

 if auth is None:

 errors = pyfos_util.set_response_parse(resp)

 if 'errors' in errors:

 return {"login-error": errors['errors']

 ['error']['error-message']}

 elif 'server-error-message' in errors:

 return {"login-error":

 errors['server-error-message']}

 else:

 return {"login-error":

 "unknown login error"}

 else:

 return {"Authorization": auth}

This code segment provides valuable insights. It shows:

 » The httplib module is useful to communicate directly with
the RESTful API.

28 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Module usage for use in other programs.

 » How to capture the authorization string used in other
operations.

 » How to detect login errors.

You can also use the library routines to forget about the details
when they provide a needed higher-level function. The login()
function avoids most of the messy details of setting up the HTTP
connection. Including this module in a Python program allows it
to log in to the fabric using the login() function:

session = pyfos_auth.login(inputs["login"],

 inputs["password"],

 inputs["ipaddr"], isHttps)

if pyfos_auth.is_failed_login(session):

 print("login failed because",

 session.get(pyfos_auth.CREDENTIAL_KEY)

 [pyfos_auth.LOGIN_ERROR_KEY])

 usage()

 sys.exit()

The associated error recovery actions in the preceding code are from
another PyFOS library module. Utilities in the PyFOS repository do
the work of assembling low-level routines such as logging into and
out of the network into functions that combine many RESTful API
calls into a higher level abstraction. In the previous section, three
commands obtained current fabric configuration information. The
user was required to cut the proper header information out of the
login response and use it to build the following two commands.

Even though a program could repeat these three steps, it isn’t
necessary because a PyFOS library utility has this feature. The
cfgshow utility accepts an IP address and login credentials from
the command line and performs all three operations. The results
appear on screen. The only unusual flag is –f, which indicates the
target virtual fabric. This example doesn’t use virtual fabrics, as
indicated by the -1 value.

cfgshow.py -i 10.18.254.37 -L admin -P password -f -1

{

 "defined-configuration": {

CHAPTER 3 Choosing Your Approach 29

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 "alias": [

 {

 "alias-name": "AIXHOST_FCS0",

 "member-entry": {

 "alias-entry-name": [

 "10:00:00:00:c9:c6:1d:56"

]

 }

 },

 {

 "alias-name": "AIXHOST_FCS2",

 "member-entry": {

 "alias-entry-name": [

 "10:00:00:00:c9:c6:12:b2"

]

 }

 },

 ...

 {

 "member-entry": {

 "entry-name": [

 "10:00:8c:7c:ff:ae:92:00",

 "20:01:00:11:0d:39:01:00"

]

 },

 "zone-name": "host180_9200",

 "zone-type": "0"

 },

THE PYTHON 3 DIFFERENCE
Python currently has two completely separate versions available:
Python 2.x and Python 3.x. With most languages, an older version
gives way to a newer version. This isn’t the case with Python because
Python 2.x enjoys such a huge advantage over Python 3.x in terms of
library support for disciplines such as data science. Until recently, a
data scientist wouldn’t even consider moving to Python 3.x because
it wouldn’t be possible to perform certain tasks.

(continued)

30 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

You can call this module from within another program and use
the output as input for a following automation stage. Note that
this output is in JSON form rather than XML. JSON is easier to use
in Python programs, though XML can also be supported.

Using the Ansible Approach
The previous two sections show examples of approaches that use
a procedural methodology. The workflow starts at the beginning,
executes a series of steps, runs to completion, and then termi-
nates. Most traditional programs work this way.

Ansible takes a declarative approach. Rather than provide sequen-
tial steps, Ansible describes each of the hosts in an inventory. The
description appears in a document called a playbook. For example,
rather than provide steps to install a particular application, Ansible
describes a host state where the application is already installed.
When you run the playbook, Ansible takes no action if the applica-
tion is already installed. If the application isn’t installed, Ansible
calls installation routines so the host is brought into the desired
state without requiring the administrator to write any specific steps.

In the realm of storage networks, the use of a declarative lan-
guage means you can describe switches and fabrics where, for

However, Python 3.x is essential because it fixes many problems in
Python 2.x, such as inconsistencies in the implementation of certain
features. For example, in Python 2.x it’s perfectly legal to use either
print "Hello" (statement form) or print("Hello") (function
form), which proves confusing. Python 3.x gets rid of the confusion
by making only the function form legal.

The print() function issue is immediately noticeable because
Python issues a syntax error if you use the wrong form. Not so notice-
able, but troublesome, is that integer math works differently in
Python 2.x and Python 3.x. The expression 3 / 2 outputs a value of 1
in Python 2.x, but a value of 1.5 in Python 3.x. In this case, the code
executes without a syntax error in either environment, so the issue
can go unnoticed. Beginning Programming with Python For Dummies,
2nd Edition, by John Paul Mueller (Wiley), can help you get up to speed
with Python 3.x quite quickly.

(continued)

CHAPTER 3 Choosing Your Approach 31

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

example, a zone is already configured with the proper hosts and
storage arrays. When you run the Ansible playbook, those zones
are defined as needed, and the hosts and storage arrays are added
to them if necessary.

With some other declarative automation utilities, it’s necessary to
install an agent on each host that the utility manages. This agent
retrieves the commands from a command center and runs them on
the local host. Ansible is unique in that it doesn’t require agents. In
order to make host state changes, Ansible establishes a secure shell
session and sends a small Python script to the host. The script carries
out the necessary operations and removes itself from the host.

You need two different skill sets to successfully implement an
Ansible solution. First, you must understand the most common
playbook operations. These operations are coded and installed for
use by the playbooks. As vendors announce support for Ansible,
they also provide script libraries for the most common tasks.
If there is a task that is required but isn’t available in the offi-
cial Ansible distribution, the open source community may provide
code for that task in publicly available repositories.

Second, you must understand your business needs to provide
ongoing playbook development. The person maintaining the play-
books doesn’t need to be a programmer and doesn’t need to know
how remote system operations occur. That person only needs to
know the desired outcomes, and should be able to construct play-
books in YAML — the markup language used by Ansible. This is
an example of an Ansible playbook:

- hosts: fc_switch_1

 vars_files:

 - ../vars/fos_password.yml

 vars:

 port_name: "0/0"

 tasks:

 - name: enable "{{port_name}}"

 m_port_op_enable:

 switch_ip: "{{fos_ip_addr}}"

 user: "{{fos_user}}"

32 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 password: "{{fos_password}}"

 vfid: -1

 name: "{{port_name}}"

 mode: "True"

The three dashes at the beginning are part of the YAML specifica-
tion. The hosts section identifies automation target switches. You
can keep sensitive information in a separate file, as demonstrated
by the fos_password.yml line. The name of a variable in double
braces: {{port_name}} indicates variable substitution. The variable
file specified in var_files tells where to find external variables.

Making Your Decision
In addition to programming style, other circumstances can cause
you to choose one programming model over the other. For exam-
ple, you may know a programming language other than Python.
Fortunately, many languages have a library that allows RESTful
API calls. All you really need then is an example of how to make
the RESTful API call and adapt it for use in your storage network.

Python is easy to understand (it’s often used in schools for that
reason). Reading the Python library code can be helpful. Even if
you don’t use the Python utilities in their current form, you can
still learn a lot by looking at the way the utility functions perform
their tasks. Make note of the sequence of calls, the parameters,
and return values, and then mimic them in your script.

Using an interpreted language is often faster than relying on a
compiled language. It can be frustrating to repeatedly compile
and debug the program, and generally speaking, the toolchain is
more complicated for compiled programs. Find a programming
language that allows interactive development. Before you commit
anything to a script, try doing it interactively to see if it will work.

You may have an automation team already in-house. If this is the
case and you will direct the automation development, rather than
writing it, you may want to find which libraries the team used in the
past, and find someone experienced in web-based programming.
Remember that although that person is good at automation, the
individual may not be good at storage networking. Take the time to
document your procedures before handing them over to the auto-
mation expert. You may even consider having the expert do a dry run
with the command line interface before he or she tries to automate.

CHAPTER 4 Automating Your First Utility 33

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

 » Understanding the examples

 » Working with RESTful applications

 » Working with PyFOS applications

 » Working with Ansible applications

 » Obtaining assistance

Automating Your
First Utility

Nothing helps make a technology feel more real than exam-
ples showing how to use it, which is the purpose of this
chapter. You see three example types: RESTful, PyFOS, and

Ansible. Each example shows a different approach to handling
automation.

Seeing the examples is almost certainly going to raise some ques-
tions in your mind. You’ll probably have even more questions as
you move on to create your own automation examples. The final
section of this chapter tells you what sort of help is available and
where to get it.

Considering the Examples
This chapter presents three approaches to implementing SAN
automations. You may find that one of the three approaches suits
your particular situation well, or you may decide that a hybrid mix
would be better. There is no one-size-fits-all solution.

34 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The examples in this section have been kept short and simple
for readability. That means that you won’t see many safeguards
that a production setup would ordinarily need. (Fear not; you can
find pointers to production-ready examples later in this chapter
under “Getting Help.”) Addresses and names are hardcoded into
the applications, no error checking is done for the return codes
of functions, and there is no exception handling. This approach
is used to make the examples easily understood. Each approach
has its own set of best practices, and you should follow these best
practices carefully.

If, after reading these examples, you decide to implement your
first automation, you may consider starting with something that
is read-only. This approach presents the lowest risk to the infra-
structure, but still gives you the opportunity to work with the
tools and the data formats used when creating automations that
both read and write information.

You may also want to take advantage of switches before they go
into production. In one case, the first automation project for an
enterprise was to pre-provision devices the enterprise would
eventually roll out to the network. The project allowed the net-
work engineers to gain experience with automation before the
systems went live. The engineers could manually correct any mis-
takes made during this project before the devices’ deployment.

Developing a RESTful API Example
Chapter 3 contains an example of how to access the RESTful API
of a fabric using the command line. By contrast, the next example
shows how to perform the task programmatically. The goal is to
build a simple Python 2.7.x utility that takes the IP address and
credentials of a switch and displays the firmware version installed
on that switch. This example requires no software other than the
standard Python installation and commonly available modules.
Here is the code that carries out this task:

#!/usr/bin/env python

import requests

import xmltodict

CHAPTER 4 Automating Your First Utility 35

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

BASE = "http://10.18.254.37/rest"

Log into the switch and get our authorization code

switchReply = requests.post(BASE + "/login",
 auth=("admin","password"))

requestHeaders = { 'authorization':

 switchReply.headers['authorization'] }

Get the firmware version running on the switch and

print the XML results

queryResults = \

 requests.get(BASE +
 "/running/switch/fibrechannel-switch/",

 headers=requestHeaders)

print queryResults.text

Convert the XML to a Python dictionary and print

the firmware version

dictionaryResults =

 xmltodict.parse(queryResults.text)

print "Firmware version: " + \
 dictionaryResults['Response']

 ['fibrechannel-switch']['firmware-version']

Free the session on the switch and verify that the

logout executed successfully

finalReply = requests.post(BASE + "/logout",
 headers=requestHeaders)

print "Final response code: " +
 str(finalReply.status_code)

Because the values for the IP address, username, and password
are hardcoded into the application, you can execute this at the
command line with no parameters:

$./example1.py

Executing this command produces the following results:

<?xml version="1.0"?>

<Response>

 <fibrechannel-switch>

36 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 <name>10:00:c4:f5:7c:d3:c3:ae</name>

 <domain-id>1</domain-id>

 <fcid>16776193</fcid>

 <user-friendly-name>NewName</user-friendly-name>

 <enabled-state>2</enabled-state>

 <up-time>1284325</up-time>

 <domain-name>englab.brocade.com</domain-name>

 <principal>1</principal>

 <ip-address>

 <ip-address>10.18.254.37</ip-address>

 </ip-address>

 <model>170.0</model>

 <firmware-version>v8.2.0</firmware-version>

 <vf-id>-1</vf-id>

 <fabric-user-friendly-name>TestFabric_AV

 </fabric-user-friendly-name>

 <ag-mode>1</ag-mode>

 </fibrechannel-switch>

</Response>

Firmware version: v8.2.0

Final response code: 204

The output begins with a dump of the XML that was returned from
the switch. Although it’s not required, it’s useful to see what was
returned as a result of the RESTful API call. Using standard library
routines, the XML is parsed and the firmware version informa-
tion is extracted and printed. The final response code is printed to
 verify that the session was shut down on the switch.

Developing a PyFOS Example
The PyFOS library located on GitHub (https://github.com/
brocade/pyfos) gives you the ability to rely on an abstraction
layer between the RESTful API calls required for network com-
munications and the logical functionality that takes place after
establishing contact. In this example, the PyFOS libraries change
the name of a switch as you might do during the initial deploy-
ment of that switch. This example relies on Python 3.x (see the
sidebar “THE PYTHON 3 DIFFERENCE” in Chapter 3 for more
information on how Python 3.x is different).

https://github.com/brocade/pyfos
https://github.com/brocade/pyfos

CHAPTER 4 Automating Your First Utility 37

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

#!/usr/bin/env python3

import pyfos.pyfos_auth as pyfos_auth

import pyfos.pyfos_switch as pyfos_switch

import pyfos.pyfos_util as pyfos_util

import sys

import brcd_util

USEHTTPS = "0"

USERNAME = "admin"

PASSWORD = "password"

IPADDRESS = "10.18.254.37"

NEWNAME = "NewName"

VFID = -1

Establish a session with the switch.

session = pyfos_auth.login(USERNAME,

 PASSWORD,IPADDRESS, USEHTTPS)

Specify the virtual fabric. -1 indicates no virtual

fabric is selected.

pyfos_auth.vfid_set(session, VFID)

The name of the switch (the WWN) is required to

update the switch information.

Obtain the current name of the switch and put it

into our reply data structure.

current_switch =

 pyfos_switch.fibrechannel_switch.get(session)

switch = pyfos_switch.fibrechannel_switch()

name = current_switch.peek_name()

switch.set_name(name)

Set the human-friendly name of the switch

switch.set_user_friendly_name(NEWNAME)

Send the request to the switch and print the

result.

result = switch.patch(session)

pyfos_util.response_print(result)

Release the session

pyfos_auth.logout(session)

38 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Prior to the execution of this program, the name of the switch was
OldName as can be seen in this command prompt:

$ ssh admin@switch1

OldName:admin> exit

When the program is run, the results are printed in JSON:

$./example2.py

{

 "success-code": 204,

 "success-message": "No Content",

 "success-type": "Success"

}

$

Logging into the switch shows that the operation did indeed run
successfully:

$ ssh admin@switch1

NewName:admin> exit

Developing an Ansible Example
This example uses Ansible to discover the available ports on
a switch. At first it may seem that you need to set up a lot of
configuration information across several files to describe this
simple action. Two of the features of Ansible are its scalability
and its ability to describe what you want done without spelling
it out in any programming language (instead, you write a code-
like description). Although this example runs a simple operation
against one switch, you can easily scale this to enterprise size and
describe many tasks without knowing a programming language.

A storage professional may notice that the words “target” and
“host” are being used in the Ansible sections of this book, but don’t
be confused by the reuse of these words. In a SAN context, the host
is typically the computer that is running applications and the target
is the storage that is servicing that host. When Ansible is being dis-
cussed, host and target refer to the object that is being managed by
Ansible. This means that an applications host, and a storage array,
and even SAN switches can all be targets of Ansible-driven auto-
mation, and the storage processor can be the host upon which an
Ansible animation acts.

CHAPTER 4 Automating Your First Utility 39

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The task itself appears in a .YAML file called a playbook. YAML
is considered a “human readable data serialization language.”
(Originally it stood for “Yet Another Markup Language,” but now
recursively stands for “YAML Ain’t Markup Language,” perhaps
to suggest it is more readable than most markup languages.) Here
is a list of descriptive items you create for this example:

 » hosts: Indicates an inventory of the target devices for this
automation.

 » vars: Allows variable substitution in the task section.
Although the variables are listed here in this case, they could
also be provided in an external file that can be maintained
separately. This allows a degree of separation between the
tasks and a standard list of hosts.

 » name: Optional; creates a more readable task name (other-
wise, the module name is used).

 » tasks: Describes two separate actions to perform:

1. Run a module named m_display_port_availability.
The text following the colon (:) on the name line is a
comment for readability. Ansible includes a number of
standard modules, but in this case, you need a SAN-
specific module. The variable name substitutions get
passed to the module as arguments. Think of register as
specifying that the temporary variable result will hold the
output of this task for a later task.

2. Run the debug module using the result of the previous
step. This is what produces the program output on the
console when you run the playbook. It uses the register
variable result populated in the previous task.

With all these requirements in mind, the following code shows
how to create an Ansible description.

- hosts: switches

 gather_facts: False

 vars:

 fos_ip_addr: "10.18.254.37"

 fos_password: "password"

 fos_user: "admin"

40 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 tasks:

 - name: display all available ports

 m_display_port_availability:

 switch_ip: "{{fos_ip_addr}}"

 user: "{{fos_user}}"

 password: "{{fos_password}}"

 vfid: -1

 register: result

 - debug: var=result

The hosts file contains an inventory of the different hosts that
Ansible will help manage. The structure of this file allows you
to define logical host names and a number of hosts grouped into
categories. In the preceding task, the group of devices in the
[switches] collection is the automation target.

switch1=10.18.254.37

[switches]

switch1 ansible_connection=local fos_ip_addr=10.18.254.37

You find the m_display_port_availability task defined in the
m_display_port_availability.py library file. That’s right —
the module is written in Python 3.x. You’ve probably realized by
now that if you are going to write automation utilities, you’ll need
to make friends with Python. The first few lines of m_display_
port_availability.py are revealing:

#!/usr/bin/env python3

import pyfos.pyfos_auth as pyfos_auth

import pyfos.pyfos_switchfcport as pyfos_switchfcport

import pyfos.pyfos_util as pyfos_util

...

This module takes advantage of the PyFOS library to handle
communications between the Ansible runtime utilities and the
SAN. Typically, you rely on automation engineers to develop a
library of generalized and low maintenance utilities like this. The
network administrators then run day-to-day operations using
the predefined modules. The command to execute this task is
pretty simple:

ansible-playbook port_available.yml

CHAPTER 4 Automating Your First Utility 41

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In this command, port_available.yml is the file. Here are the
results:

PLAY [switches] *************************************

TASK [display all available ports] ******************

ok: [switch1]

TASK [debug] **

ok: [switch1] => {

 "result": {

 "available_ports": [

 {

 "name": "0/0",

 "port-type": "G_PORT"

 },

 {

 "name": "0/1",

 "port-type": "U_PORT"

 },

 ...

 {

 "name": "0/23",

 "port-type": "U_PORT"

 }

],

 "changed": false,

 "failed": false

 }

}

PLAY RECAP **

switch1 : ok=2 changed=0

 unreachable=0 failed=0

42 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The PLAY line tells that the process is kicking off and that the
group of devices named switches will be the target. The next few
lines tell the results of each task. The description of the first task
is the human-readable string specified on the name line. Because
the second task didn’t specify an additional name, the output
shows the name of the module debug.

Under each task is a status line saying the tasks completed suc-
cessfully. The output under the second task is the output of that
task as produced by the debug module. The result string contains
the output of the previous step, which is a list of the available
ports on the fabric. In more complex automations, later steps
would consume this result, which is why it appears in JSON.

Finally, the PLAY RECAP says that two tasks were run successfully
on the group switches. The output states that no steps indicate
the device states have changed, it’s possible to contact all devices
in the switches list, and that no tasks indicate failure.

Getting Help
Everyone needs help from time to time. Good news! You can get
help and it won’t cost anything. Many have traveled before you
down the road to automation and have made their tools and expe-
riences available to you. Here are some sites that may help you
along your journey:

 » Python (www.python.org): This easy-to-learn language
supports the most sophisticated applications and is being
taught in grade schools all around the world.

 » Ansible (www.ansible.com): Leave programming to the
programmers and concentrate on the managerial perspec-
tives of your automations through this robust, extensible
toolset.

 » Libraries and Utilities (www.github.com/brocade): The
PyFOS library, Ansible playbooks, and additional program-
ming information can help you implement your ongoing SAN
automation projects.

 » Automation Forums (http://my.brocade.com): Share
experiences, get advice, and learn from the community in the
Automation Forum. Interact with those who are developing
the tools and have used them to solve their business problems.

http://www.python.org
https://www.ansible.com
http://www.github.com/brocade
http://my.brocade.com

CHAPTER 5 Ten Ways to Use SAN Automation 43

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

 » Ten ways to make your SAN automation
experience better

Ten Ways to Use SAN
Automation

Everyone loves helpful tips that make using a new technology
easier, which is the purpose of this chapter. Here are some
sample cases where building an automation can save time

and make your life better:

 » Verifying your fabric: The operations team tells you that it
moved a host from one port to another. A quick automated
verification audit could validate the claim.

 » Zoning a new device: The new storage array arrives and it’s
time to set up zones for all the hypervisor servers that will
use it — all 28 of them! That sounds tedious, but an automa-
tion won’t mind doing that for you.

 » Provisioning ports to the new server: You need to generate
a list of available ports in every rack at a moment’s notice.
When the team needs ports for the new host, find them
quickly and confidently.

 » Deploying new infrastructure: It’s time to move the
switches out of the warehouse and into the data center.
Before you deploy them, configure the fabric ID, IP address,
and other particulars to make for a smooth, controlled
installation.

44 SAN Automation For Dummies, Brocade Special Edition

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Troubleshooting the fabric: Every SAN administrator has a
go-to set of commands to use as soon as there is a hint of
trouble. Some of these commands involve logging into each
of the fabric switches to gather initial diagnostic information.
Even the first line administrator could run this diagnostic
script and hand off the result to the expert to reduce time to
resolution.

 » Simplifying complex operations: Because a script can
automate the actions of an expert, you can encapsulate the
subtleties of a sophisticated operation so a person with a
lower level of expertise can perform them, resulting in more
of a self-serve model.

 » Translating reports into another format: The business
units ask for usage reports they can read. You can use scripts
to translate the fabric statistics into verbiage the business
units understand, and you can generate the reports on the
fly. Give the clients current numbers rather than a stale
monthly report. You might even let them serve themselves!

 » Repeating timed operations: Generate that monthly report
automatically and have the automation mail it to you. You’ll
never forget to generate it, and your boss will complement
you on your ability to get reports in on time.

 » Integrating with automations on other platforms: You
don’t have to limit automations to the SAN. Write a script
that gathers information from the fabric and catalogs it into
a folder structure on your management server.

 » Chatting with your fabric: ChatOps allows your infrastruc-
ture to participate in conversations with you and teams.
When you get that call at midnight, chat with the fabric to
ask how it’s doing. Get the critical indicators that tell you if
things can wait or if you should start your late-night journey
to the data center.

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book

	Chapter 1 Rediscovering the Automated SAN
	Exploring the Automated SAN
	Fabric formation
	Trunking
	Slow drain device detection

	Comparing to Other Infrastructures
	Integrating FC into Today’s Workflows
	Creating an Automation Plan

	Chapter 2 Modernizing Your Automation Toolkit
	Considering the Limits of CLI
	Using Structured Data Exchange
	Understanding the Data Structuring Methods
	Using Standardized Protocols

	Chapter 3 Choosing Your Approach
	Considering the Available Choices
	Using the RESTful Approach
	Using the Python Approach
	Using the Ansible Approach
	Making Your Decision

	Chapter 4 Automating Your First Utility
	Considering the Examples
	Developing a RESTful API Example
	Developing a PyFOS Example
	Developing an Ansible Example
	Getting Help

	Chapter 5 Ten Ways to Use SAN Automation
	EULA

